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A quantitative structure-activity (affinity) relationship (QSAR) study is carried out to model the proton,
sodium, copper, and silver cation affinities ofR-amino acids (AA). Stepping multiple linear regression (MLR),
partial least squares (PLS), and artificial neural network (ANN) approaches are applied to elucidate the multiple
factors affecting these affinities. The MLR and PLS models reveal that the variation in proton affinity is
attributed to the highest electrophilic superdelocalizability of nitrogen (major) and the number of rotatable
bonds (minor) in AA. The noncovalent interactions, especially ion-dipole interactions, are responsible for
the changes in Na+ affinity. The ionization potential, dipole moment of the side chain, and degree of linearity
are the properties of AA that give the best correlation with the Cu+ and Ag+ affinities. The ANN models are
developed to study the relationships (linear or nonlinear) between the molecular descriptors and binding
affinities. The ANN models show higher predictive power. The QSAR models are used to study the binding
forms of AA (neutral vs zwitterionic) upon protonation/cationization. To our knowledge, this is the first
attempt to carry out a QSAR study on protonated/cationizedΑΑ to elucidate their binding properties. In
virtue of the Na+ affinity ANN model, the Na+ affinities of dihydroxyphenylalanine (DOPA) were predicted.
This work may pave the way for the success of applying similar approaches to peptides or proteins (with AA
as the building blocks) in the future.

1. Introduction

Proton, alkali metal, and transition metal cations play essential
roles in various biological processes. Proton (H+) is ubiquitous
in biological systems; H+ plays a key role in determining the
structures and energetics of proteins.1 Sodium cation (Na+) is
one of the most abundant metal cations in biological systems
and is involved in various processes, including osmotic balance,
stabilization of biomolecular conformations, and information
transfer via ion pumps and ion channels.1 Copper cation (Cu+)
plays an essential role in oxidation, dioxygen transport, and
electron transfer.2 Silver cation (Ag+) does not appear to have
a role in natural biological systems; it is used as an antimicrobial
agent.3 Studies by Adams and other researchers have demon-
strated that, in many cases, the gas-phase binding parallels that
encountered inside proteins in aqueous solution chemistry.4

Thus, thermodynamic data obtained in the gas phase are of
particular value for understanding the nature of cation-protein
interactions in the aqueous environment.

There are considerable evidences that the site of protonation5

and cationization6-8 in peptides influences the fragmentation
reactions observed in tandem mass spectra. For instance,
protonated peptide is invariably observed in the positive ion
mass spectrometric analysis. The fragmentation reaction chem-
istry of protonated peptide is adequately described in terms of
a “mobile proton model”.9 The fragmentation reactions observed
depend in part on the relative proton affinities of various AA.
In fact, that a variety of cations can easily bind to peptides has
been exploited in the field of mass spectrometry, where proton

and metal cations (such as Na+, Cu+, and Ag+) have been used
as ionizing agents for peptide sequencing.5-8

Due to the biological importance and practical applications
in mass spectrometric research fields, the intrinsic nature of
binding between a proton/metal cation andR-amino acids (AA,
as the building blocks of peptides and proteins) has been a hot
topic in recent years. Several quantitative studies on H+, Na+,
Cu+, and Ag+ affinities of AA have been reported. Interestingly,
although the ionic radii of Na+ and Cu+ are similar (0.97 Å)
and the outer electronic configurations are the same for Cu+

and Ag+ (d10), their biological roles and binding properties are
different.1-3,5-8

Quantitative structure-activity relationship (QSAR) studies
have been demonstrated to be an effective computational tool
in understanding the relationships between the structures of
molecules and their properties, e.g., biological activity, boiling
point, etc. In this work, the QSAR models developed using
multiple linear regression (MLR), partial least squares (PLS),
and artificial neural network (ANN) approaches were used to
study (i) the binding nature of protonated and cationized (Na+,
Cu+, Ag+) AA, (ii) the relationships (linear or nonlinear)
between molecular descriptors and binding affinities, (iii) the
binding forms of AA (neutral (CS) vs zwitterionic (ZW)) upon
protonation/cationization, and (iv) the noncovalent interaction
between Na+ and dihyroxyphenylalanine.

2. Methodology

2.1. Data Set.The QSAR analysis was performed on 20
common AA. The proton affinity reviewed and finally recom-
mended by Harrison10 was used. The Na+,11 Cu+,12-14 and
Ag+ 15,16binding energies determined by a kinetic method were
chosen for this study.
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2.2. Molecular Modeling and Molecular Descriptors.All
structures were generated within the CACHE WorkSystem Pro
(version 6.1.12.33) package (Fujitsu Limited, Oxford Molecular
Ltd.), in which the subroutine MM3/PM3 calculation was used.
The same approach has been used in other QSAR studies.17,18

In brief, the chemical structures were initially refined by
performing a preoptimized calculation of molecular mechanics.
The CACHE MM3 augmented mode implements the Allinger’s
MM3 force field was used.19 The structures were further refined
with CACHE MOPAC2002, which is a semiempirical quantum
mechanics package that solves the Schro¨dinger equation by
using the PM3 semiempirical Hamiltonian algorithm.

Molecular descriptor values derived from the CS and ZW
forms of AA were calculated with the TSAR 3D (version 3.3)
and CACHE WorkSystem Pro (version 6.1.12.33) packages.
Descriptors for the entire molecule, side chain, and nitrogen of
the AA were calculated. TSAR afforded calculation of the
following descriptors: molecular mass, surface area, volume,
ellipsoidal volume, dipole/lipole moment, Verloop parameter,
Wiener, Randic, Balaban, electrotopological state index, mo-
lecular connectivity index, Kier and Hall shape index, number
of rotatable bonds/H-bond donors/acceptors, VAMP energy and
VAMP polarizability, and dipole and octupole components.
Partial charge, HOMO/LUMO density, electrophilic/nucleo-
philic/radical frontier density, and superdelocalizability of
nitrogen were calculated using the CACHE program. These
descriptors encode topologic, geometric, and electronic informa-
tion about AA. The definitions of these descriptors are available
in the literature;20,21 thus, no details are repeated here, unless
they are used in the final QSAR models. Details will be
discussed in section 3.1 and Table 1.

2.3. MLR and PLS Models.On the basis of identical tests,
those descriptors with identical values for more than 90% of
theΑΑ were discarded. This is important because if there was
no discrimination between descriptor values, little useful
information would be provided by that descriptor. Pairwise
correlation analysis of the remaining descriptors was performed;
one of the descriptors, with correlation greater than 0.9, was
removed.22

In brief, the MLR and PLS models were developed with the
following steps (Figure 1): (i) A stepping MLR procedure, with
leave-one-out cross-validation, forward selection, and backward
elimination, was used to select the important molecular descrip-
tor values derived from the CS and ZW form ofΑΑ. The
predictive power of a model is described withr2(CV), the cross-
validated equivalent of the correlation coefficient (r2). In general,
models developed with those descriptor values derived from
the CS forms of AA give higher cross-validation coefficients
(r2(CV)). However, two exceptions were observed, i.e., Na+/
Ag+-Pro. In other words, the final MLR models on H+ and
Cu+ affinities were developed with those descriptor values
derived from the CS form of AA. For the final Na+ and Ag+

affinities models, the descriptor values were derived from the
ZW form of Pro but the CS form of other AA. (ii) For a well-

defined problem, MLR and PLS models should give similar
predictions. PLS analysis with leave-one-out cross-validation
was performed using the same set of molecular descriptors, to
check if the predictions (affinities) are consistent. The coef-
ficients were expressed relative to their standardized form to
give an immediate indication of the relative importance of each
descriptor in the final models.23 (iii) Final models with high
cross-validation coefficientsr2(CV) and number of descriptors
not more than three are discussed in details.

2.4. ANN Models.ANN is a layered system of processing
units that are interconnected to facilitate the ordered transfer
and data processing. It is intended to simulate the interpretative
capacity of the brain. It was reported that ANN is superior to
MLR in providing accurate predictions.24-27 By definition, MLR
assumes a linear relationship between binding affinities and
molecular descriptors, or incorporated explicitly.24-26 In contrast,
ANN makes no assumption about the linearity of a problem.
The major advantage of ANN lies in the fact that QSAR can
be developed without having to specify the analytical form of
a particular correlation model.

In this work, the neurons were arranged in a three-layered
forward feed ANN model: an input layer (molecular descriptor
values used in the final MLR and PLS models), one hidden
layer, and an output layer (affinities). The Monte Carlo algorithm
was used to select a better set of starting weights within the
default constrained limits. A proportion of the input data (30%)
was excluded from the training set and used as a test set. The
ratio (F) between the number of input variables and the number
of hidden neurons, which is critical to the predictive power of

TABLE 1: Molecular Descriptors Used in the Final QSAR
Models

notation molecular descriptors refs

DM dipole moment (entire AA) 20, 21
DMS dipole moment (side chain) 20
ESN highest electrophilic superdelocalizability

on nitrogen (site of protonation)
20, 21

ESS sum of the E-state index (side chain) 32-35
IP ionization potential (entire AA) 20, 21
KA KAlpha2 index (entire AA) 42-45
RB rotatable bonds (entire AA) 20

Figure 1. Workflow used to develop the QSAR models.
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the ANN, was set to close to 2 to prevent the problems of
overfitting or memorizing data.

The ANN models were used to study the (linear or nonlinear)
relationships between the molecular descriptors and binding
affinities (Table 1). To display the dependency of each molecular
descriptor (in a qualitative manner), a constant value was fed
into all input nodes, except for the molecular descriptor in
question, which was varied over a range of 0.1-1.0. The results
were visualized on a 2D plot of output node against input
(dependency graph).

3. Results and Discussion

3.1. Final MLR and PLS Affinity Models. According to
the procedures mentioned above, the final MLR and PLS models
on binding affinities were developed.

3.1.1. Proton Affinity.Harrison reviewed the literature to
derive a consistent set of proton affinities (PA) for AA.10 This
set of data was chosen for our study. The final MLR model is
presented in eq 1 (Table 1S in the Supporting Information):

r2(CV) ) 0.8 where ESN and RB stand for the highest
electrophilic superdelocalizability of nitrogen and the number
of rotatable bonds in AA, respectively;r2(CV) is the cross-
validated equivalent of the correlation coefficient (r2) that
describes the predictive power of the model.

The final PLS model developed with the same molecular
descriptors is represented by eq 2 (Table 1S):

The statistical significance) 0.4, r2(CV) ) 0.8.
Consistent results were obtained from the MLR and PLS

models. Predicted affinities derived from the MLR model (eq
1) versus those of the PLS model (eq 2) give an equation of
the formy ) x and anr2 of 0.996. The statistical significance
value less than 1.0 indicates that the PLS components are
significant.23 The coefficients of the PLS models are shown
relative to the standardized descriptors values; their relative
magnitudes give an immediate indication of the relative
importance of each molecular descriptor in the final models.23

They are discussed below:
The electrophilic superdelocalizability of an atom is defined

as:

where CRj, λj, R, and j stand for the eigenvectors and the
eigenvalues, atomic orbitals (q), and occupied molecular orbitals
(m), respectively. It is a measure of the availability of electrons.
It was reported that experimental hydrogen binding strength
increases as electrophilic superdelocalizability increases, and a
good correlation was reported for small organic molecules.28

However, no correlation has been reported for AA, to the best
of our knowledge.

It is generally believed that nitrogen is the most favorable
protonation site forΑΑ. The symbol ESN (eqs 1 and 2) is
defined as the highest electrophilic superdelocalizability on
nitrogen. Most of the AA show the highest electrophilic
superdelocalizabilty on theR-NH2 nitrogens, with some excep-
tions: the nitrogens in the side chain of Arg, His, and Lys have
the highest electrophilic superdelocalizability instead. Consis-

tently, those nitrogens which we found to have the highest
electrophilic superdelocalizability were also found to be the sites
of protonation by Maksic´ et al.29 In this work, we found the
PLS coefficient (eq 2) for ESN is the largest. Our results further
confirmed that the variation in PA is mainly attributed to the
availability of electrons in the major protonation sites (R-NH2

or the side chain of AA).
A rotatable bond is defined as any single-order bond that is

not a terminal bond, not a ring bond, and not an amide bond.20

In eq 2, the number of rotatable bonds (RB) shows a minor
contribution to the variation in proton affinity. Neutral and
protonated AA are stabilized by networks of intramolecular
hydrogen bonds (H-bond); their stabilities are determined by
the interplay between the intramolecular H-bond and internal
strain. Upon protonation, the original networks of the intra-
molecular H-bonds are disturbed. Those AA with more rotatable
bonds tend to have lower internal strain. They have a higher
tendency to retain the original networks of the intramolecular
H-bonds or change to another binding network with comparable
stabilities. As a result, PA increases as the RB increases.

3.1.2. Sodium Affinity.Kish et al. determined the Na+

affinities of AA by a kinetic method;11 this set of data was
chosen for our studies. According to the procedure mentioned
in section 2.3, a high predictive power model was developed
when the molecular descriptor values were derived from the
neutral form of AA and the ZW form of Pro. For example, using
the molecular descriptors in eq 4, but replacing the molecular
descriptor values derived from the ZW form of Pro with those
of the CS form, ther2(CV) decreased by 0.1. Both the MLR
and PLS models give similar predictions (Table 2S in the
Supporting Information); the final PLS model is shown in eq
4:

The statistical significance) 0.4, r2(CV) ) 0.8.
The dipole moment of the side chain (DMS) and that of the

entire molecule (DM) of AA increase as the Na+ affinities
increase. This implies that ion-dipole interaction plays an
important role in Na+ binding; this result is consistent with
previous findings.30,31

The E-state index is a descriptor that represents the electron
density and the accessibility of those electrons to participate in
noncovalent intermolecular interactions.32,33The index also takes
into account the structural configuration of the nearest neighbors
surrounding the atom and thus contains some shape information,
although in a secondary fashion. The E-state value of the side
chain (ESS) is equal to the sum of states values (S) for all atoms
in the side chain. The states value for atomi in the side chain
is defined asSi:34,35

The perturbation term is defined as

in which the separation,rij, is given as the number of atoms in
the shortest path between atomsi and j. The intrinsic state (Ii)
for an atomi is obtained from the ratio of its valence state
electronegativity to the number of skeletal bonds, that is, the
avenues over which electron density may be distributed, and is
given as follows:

Na+ affinity ) 6DMS + 2DM + 2ESS + 165 (4)

Si ) Ii + ∆Iij (5)

∆Iij ) ∑(Ii - Ij)/rij
2 (6)

Ii ) ((2/Ni)
2δi

V + 1)/δi (7)

PA ) 162ESN + 19RB+ 672 (1)

PA ) 180ESN + 17RB+ 653 (2)

electrophilic superdelocalizability)
2 ∑

j ) 1, m
∑

R ) 1, q

(cRj
2/λj) (3)
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where Ni is the principal quantum number for the valence
electrons,δi is the number of connections in the skeleton, i.e.,
the number of electrons in theσ orbital (σ) minus the number
of hydrogens (h) bonded to the atomi, δi

V is the molecular
connectivity valence, i.e.,σ + π + n - h, whereπ andn are
the number of electrons in theπ orbital and the lone pair,
respectively, in atomi. As a consequence of this definition,
atoms that possessπ and lone pair electrons or are terminal
atoms or lie on the mantle of the molecule tend to have large
positive values forSi. Atoms which do not haveπ and lone
pair electrons and/or are buried in the interior of the molecule
tend to have small or negative E-state values.34 To the best of
our knowledge, this is the first time Na+ affinity was reported
to increase with E-state value increases. This could be attributed
to those favorable cation-dipole and cation-π interactions.

It is noted that two out of the three molecular descriptors
used in the final Na+ models describe the properties of side
chains (ESS and DMS). This reflects the important role of the
side chain in Na+ binding. It is consistent with previous
theoretical results for sodiated Ser, Cys, Phe, Tyr, Trp, etc. that
their functional side chains also participate in Na+ bindings.36-39

3.1.3. Copper Affinity.Hoyau and Ohanessian13 combined
their best calculated Cu+-Gly affinity with Cerda and Wes-
demiotis’s experimental relative scale to obtain absolute affini-
ties for Cu+-AA.12 The Cu+-Val, Lys, and Arg affinities were
further determined by an advanced kinetic method.14 These
reported affinities were used to develop the MLR and PLS
models (Table 3S in the Supporting Information); the final PLS
model is depicted in eq 8:

The statistical significance) 0.5, r2(CV) ) 0.8.
3.1.4. SilVer Affinity. Lee and co-workers determined the

relative silver ion binding energies by a kinetic method.15 This
relative scale was anchored to Shoeib et al.’s reported theoretical
Ag+-Gly affinity (at the B3-LYP/DZVP level of theory),16 to
obtain the data set for this work. The final MLR and PLS models
were developed with the molecular descriptor values derived
from the CS form of AA but the ZW form of proline. Both
MLR and PLS models give similar predictions (Table 4S in
the Supporting Information). The final PLS model is shown in
eq 9:

The statistical significance) 0.4, r2(CV) ) 0.8.
It is of interest to note that the same molecular descriptors

with similar coefficients (same order of magnitude) were used
in the final Cu+ and Ag+ affinities models (eqs 8 and 9). Thus,
the variations in Cu+ and Ag+ affinities are attributed to the
similar factors as discussed below:

Both Cu+ and Ag+ are soft acids according to the hard-soft
acid-base (HSAB) principle. The definition of the absolute
softness of an AA is given by 1/(ionization potential- electron
affinity). Since all AA have very small electron affinities,40 one
can reasonably assume that the absolute softness increases as
the ionization potential decreases. The negative coefficient of
the IP (eqs 8 and 9) indicates the applicability of the HSAB
principle to these bindings, i.e., Cu+ and Ag+ affinities increase
as the softness of AA increases.

It is generally believed that the binding of Cu+ and Ag+ to
ΑΑ involves a sum of charge-transfer and electrostatic interac-

tions.40,41It is not a surprise that the dipole moment of the side
chain (DMS), also contributed to the variations in Cu+ and Ag+

affinities.
Kappa Alpha index (KA) is defined as

whereA is the number of atoms in the molecule,2Pi is the total
number of paths along adjacent bonds with two bond lengths,
andR accounts for the contribution of each atom to the overall
shape of a molecule based on a comparison with a carbon sp3

atom. Thus,R is defined as the ratio of radii of carbon and
each individual atom.

As a consequence of this definition, KA indicates the degree
of linearity of bonding patterns for a molecule.42-44 The KA
value is large for linear structures but small for branching
structures.44 In general, the flexibility of a molecule is directly
related to the degree of linearity.45 All AA have a common
backbone structure; thus, the variation in KA is mainly attributed
to the linear flexible side chain, such as Arg, whose KA value
is largest. Positive coefficients are observed for KA in Cu+ and
Ag+ affinities models (eqs 8 and 9). This implies that the high
Cu+ and Ag+-Arg affinities originate from the flexible side
chains enabling multidentate coordination.

3.1.5. General Remarks on MLR/PLS Models.Together with
the measurement and computation of affinities, discussion and
interpretation of trends has been reported over the years. Based
on chemical intuition and by interpreting the correlations among
various binding affinities, researchers believe that protonation
and Na+ binding are covalent and electrostatic in nature,
respectively,11,46 while Cu+ and Ag+ are soft acids.12,15 In this
work, the final MLR and PLS models on proton affinity show
that H+ favors interaction with those AA with a high electro-
philic superdelocalizability on nitrogen (major factor) and a large
number of rotatable bonds (minor factor). Noncovalent inter-
actions, especially ion-dipole interactions, contribute signifi-
cantly to the Na+ binding. The HSAB principle can be used to
explain the Cu+ and Ag+ binding affinities nicely. In addition,
ion-dipole interactions and the degree of linearity of AA are
responsible for the variations in Cu+ and Ag+ binding affinities.
In general, these conclusions are consistent with the literature;
hence, they prove the validity of the QSAR models developed
in this work.

Despite what has been studied in the past, no good correlation
between affinity and any single physical/chemical property of
ΑΑ has been reported. Although such a trend is present in the
data, the correlation is not strong. For instance, a poor correlation
between hardness and Cu+ affinity was reported for small
ligands (e.g., NH3, MeCN, Me2SO, etc.). This is because
hardness only accounts for one component of the binding.47

There is no doubt that for complex systems such asΑΑ, a single
property is not enough to explain the trend in a quantitative
manner. For example, correlations between affinities and the
descriptors with the largest coefficients in their corresponding
PLS models (i.e., ESN, DMS, and IP for H+, Na+, and Cu+/
Ag+ affinities, respectively) give an averager2 of 0.4 only. Thus,
a single property could only account for part of the variations
in affinities. The QSAR models described herein show better
correlations and higher predictive powers (averager2(CV) )
0.8) and elucidate the multiple factors contributing to the
variations in binding affinities. To the best of our knowledge,
molecular descriptors such as ESN/RB, DMS/ESS, and DMS/
KA have not been used to elucidate the H+, Na+, Ag+/Cu+

Cu+ affinity ) -21IP+ 6DMS + 12KA + 449 (8)

Ag+ affinity ) -29IP+ 8DMS + 14KA + 455 (9)

KA ) ((A + R - 1)(A + R - 2)2)/(2Pi + R)2 (10)

R ) (rx/rCsp3) - 1 (11)
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affinities of AA, respectively. We envision that these molecular
descriptors may also be important in elucidating other binding
properties of AA, as well as those of peptides/proteins.

3.2. Artificial Neural Network. The MLR and PLS methods
have been found useful for the establishment of linear relation-
ships. Recently, there is growing interest in the application of
artificial neural networks (ANN) in the field of QSAR. The
special interest in ANN arises from its ability to perform
nonlinear mapping and its higher predictive power.24-27 The
relationships (linear or nonlinear) between molecular descriptors
and the predicted affinities were shown in ANN dependence
graphs.

The predictive power could be judged from a plot of predicted
versus experimental affinities.24 Higher correlation coefficients
were given by the trained ANN architectures (averager2 ) 0.92,
Table 2), in comparison with that of the MLR and PLS models
(averager2 ) 0.86, Table 2).

In the ANN dependence graphs of the H+ affinity model
(Figure 2), PA increases approximately linearly with ESN and
RB. This is consistent with the positive coefficients found in
the final MLR and PLS models.

In the ANN dependency graphs of the Na+ affinity model,
Na+ affinity increases with the values of the molecular descrip-
tors (DM, DMS, and ESS). The increasing trend is consistent
with our MLR and PLS models (the coefficients are positive
for all the descriptors). Nonlinear relationships were observed
for DMS and ESS. The nonlinear relationships were explained
with classical electrostatic theory. Ion-dipole interaction is
chosen as an example. The ion-dipole interaction strength is
proportional toµ cos(Φ)/rµ

2, whereµ is the permanent molecular
dipole moment,Φ is the angle of deviation between the ion
and the dipole vector (in deg), andrµ is the distance between
the ion and the center of the dipole moment vector (in
angstrom).48 As Φ and rµ vary among the AA, nonlinear
relationships were obtained.

For the ANN models on Cu+ and Ag+ affinities, all
dependency graphs show increasing trends, except IP. This is
consistent with the sign of the coefficients in the MLR and PLS
models (negative for IP, positive for DMS and KA). Cu+ and
Ag+ affinities increase approximately linearly with all descrip-
tors, except KA in the Cu+ affinity model (Figure 3). It is of
interest to note that the dependency graphs of IP and DMS are
similar for the Cu+ and Ag+ models but different in the case of
KA (Figure 3). For Cu+ affinity, the KA dependency graphs
show a steady increase followed by a dramatic increase.
However, no dramatic increase was observed for the case of
the Ag+ affinity model. This implied that Ag+ gains less from
the binding with AA, whose side chain is linear and flexible.
Arg got the largest KA values; thus, we would like to get a
better understanding about this discrepancy by investigating Arg
in detail. It was reported that Arg surrounds the alkali metal
cations and solvates the charge through multiple interactions
with the N-terminus, the carbonyl oxygen, and terminal nitrogen
of the side chain, except Cs+; it cannot fit inside this pocket
formed by Arg. Since Cs+ sites on the side of the Arg, solvation
is not nearly as effective as it is for Li+.49 As Ag+ is larger
than Cu+ in size, one may expect Ag+ may not fit as well as
Cu+ inside the pocket formed by Arg. We propose that this
could be one of the explanations for the discrepancy. In
conclusion, with the use of ANN models, higher predictive
power could be obtained by considering the nonlinear relation-
ships.

3.3. Zwitterionic versus Neutral.All AA are known to adopt
the ZW form with deprotonated carboxyl and protonated amine
or basic side chain in aqueous phases, as water preferentially
stabilizes the ZW conformers over the CS one. In contrast, the
inherently unstable ZW conformers are less stable than their
CS forms in the gas phase. This has been unequivocally shown
for Gly, Phe, as well as for the most basic Arg.50 It was reported
that the ZW conformers of AA could gain stability by
complexation with metal cations. To study the binding forms
of AA upon cationization, i.e., CS versus ZW, theoretical
approaches were used.30 However high-level ab initio calcula-
tions are always computationally demanding for large systems.
Although it is relatively easy to measure binding affinities
experimentally, it could be difficult to obtain direct or indirect
evident on binding forms (CS vs ZW) experimentally. Several
attempts were made to probe the binding forms experimentally
using kinetic methods51,52 or blackbody infrared radiative

Figure 2. Dependency graphs of the ANN model on H+ affinity: (a)
ESN; (b) RB.

TABLE 2: Correlation Coefficients ( r2) between Predicted
and Experimental Affinities of the MLR, PLS, and ANN
Models

model MLR PLS ANN

H+ affinity 0.85 0.85 0.86
Na+ affinity 0.85 0.85 0.91
Cu+ affinity 0.85 0.85 0.96
Ag+ affinity 0.88 0.88 0.93
average 0.86 0.86 0.92

Figure 3. KA dependency graphs of the ANN models on (a) Cu+ and
(b) Ag+ affinities.

12352 J. Phys. Chem. A, Vol. 110, No. 44, 2006 Siu and Che



dissociation approaches.49,53 Recently, by coupling a free
electron laser with a Fourier transform ion cyclotron resonance
mass spectrometer,54 vibrational fingerprints were used to
provide direct evidence on the ZW structure of cationized
proline. Here, we propose an alternative approach to provide a
rough estimation on the binding form using QSAR models, with
the steps mentioned above (Figure 1). In section 3.1, the
descriptor values were first derived from the CS and ZW forms
of AA. A stepwise MLR procedure was used to choose the best
descriptors to develop MLR and PLS models. In general, we
found descriptor values derived from the CS form of AA give
better PA and Cu+ affinity models with higherr2(CV). For Na+

and Ag+ affinities models, descriptor values derived from the
ZW form of Pro and the CS form for the rest of AA were used.
However, nonlinear relationships have not been considered in
the MLR and PLS models; thus, the results still need to be
further confirmed with the ANN model.

In this section, the descriptor values derived from the CS
and ZW forms of AA were input to the final trained ANN model
to predict the affinities for the CS and ZW forms of AA. They
were named as predicted CS affinity and predicted ZW affinity,
respectively, in eq 12. These predicted affinities were compared
with the actual experimental affinities (i.e., the actual affinity
in eq 12). Then a CSvsZW index, defined as follows, is
calculated for each AA:

If the CSvsZW index is positive, one may conclude that the
experimentally determined affinity is better represented by the
CS form of AA and vice versa. In other words, making use of
experimental affinity, one can estimate the binding form of AA
by QSAR models.

Comprehensive computational studies have been carried out
on the possible structures of protonated/cationized glycine (Gly).
Glycine is known to be in the CS form in all the protonated
and cationized complexes.13,16,29 Consistently, the CSvsZW
indices for Gly are positive for all the cases studied here.

Proline is an interesting case. As reported previously, one
would expect that Pro assumes the ZW form upon Na+ and
Ag+ binding,16,36,55,56while H+ and Cu+ are stabilized by the
CS form of Pro.29,55,56With the use of the final ANN model,
consistent results were found, i.e., negative CSvsZW indices
were obtained for Ag+ and Na+-Pro, but positive indices were
found for H+ and Cu+-Pro complexes.

We have also extended our analysis to Na+-Arg, whose
binding form upon sodiation (CS or ZW) is still controversial.
Ion mobility studies by Wyttenbach et al.57 predicted that Arg
adopts the ZW form. Blackbody infrared radiative dissociation
and DFT calculations reported by Jockusch et al.49 suggested
that Arg is in the CS and ZW forms, respectively. Using a
kinetic method, Wesdemiotis and co-workers predicted that Arg
is in the CS form instead.51,52 In this work, the CSvsZW index
for Na+-Arg was found to be nearly zero (-0.3). This may
suggest that the CS and ZW forms of Arg have the same
tendency to stabilize Na+. This may explain why different results
were reported in the literature.

No negative CSvsZW index was found for other protonated
and cationized AA. Although no detailed studies on the CS
versus ZW binding forms of these AA have been reported, it is
generally believed that these AA have a lower tendency to form
the ZW structure upon protonation and cationization compared
with that of Pro (with a secondary amine) and Arg (with the
most basic side chain).

We would like to emphasize that the QSAR approach
discussed herein cannot replace the use of theoretical or
experimental techniques cited previously. The absolute CSvsZW
values, albeit inexact and nonrigorous, do appear to provide a
fairly satisfactory estimation on the binding forms of CS versus
ZW. We envision that QSAR could be used as a computationally
less demanding method to estimate the binding forms of CS
versus ZW forms for other complex systems in the future, once
the binding affinities are determined.

3.4. Predicted Na+ Affinities of Dihydroxyphenylalanine
(DOPA). We believe the QSAR models developed herein may
be beneficial for predicting affinities of other similar systems
and bring new insight. In this section, we would like to vindicate
this approach using sodiated dihyroxyphenylalanine (DOPA)
as an example.

DOPA is a neurotransmitter that acts predominantly in the
central nervous system and is associated with neurological
diseases such as parkinsonism and schizophrenia.58-60 The
biosynthesis of DOPA begins with phenylalanine (Phe)/tyrosine
(Tyr). Phenylalanine hydroxylase (PAH) converts Phe to Tyr.
Tyrosine hydroxylase (TH) catalyzes the conversion of Tyr to
DOPA, the rate-limiting steps in the biosynthesis of neurotrans-
mitters. These aromatic amino acid hydroxylases are functionally
and structurally closely related. The activity of these aromatic
amino acid hydroxylases (PAH, TH) is subject to feedback
inhibition by DOPA.61 It was reported that the feedback
inhibition requires the involvement of the amino acids residues
Arg37 and Arg38 in TH.62,63 Thus, it was hypothesized that
the electrical field composted of the positive charge intrinsic to
Arg is an essential regulator of the inhibition for TH.62 It is
generally believed that noncovalent interactions play a key role
in the feedback inhibition. It would be interesting to systemati-
cally study the tendency for DOPA, Phe, and Tyr to interact
with a positively charged cation. It was previously shown that
sodium metal cations, mimicking positively charged sites, can
be used to probe the intrinsic noncovalent interactions.64 We
believe the intrinsic noncovalent interactions between Na+ and
aromatic amino acids (Phe, Tyr) and DOPA may pave the way
for more complete models describing these noncovalent inter-
actions in chemistry and biology. Although Na+-Phe and Tyr
have been extensively studied, no data on Na+-DOPA has been
reported, rendering a systematic comparison difficult.

In virtue of the final Na+ affinity ANN model reported herein,
the Na+ affinities of Phe, Tyr, and DOPA were systematically
predicted to be 202.1, 202.4, and 202.5 kJ mol-1, respectively.
To our knowledge, this is the first reported Na+-DOPA value.
To check the quality of these predicted values, DFT affinities
(Supporting Information) calculated for comparison give an
absolute mean derivation of 2 kJ mol-1. Thus, one may conclude
that our predicted values are reasonable. Based on these
predicted affinities, one may conceive that the tendency for Phe,
Tyr, and DOPA to form electrostatic interactions with a
positively charged site are comparable intrinsically.

4. Conclusions

To the best of our knowledge, this is the first QSAR study
on proton, sodium, copper, and silver cation affinities ofΑΑ
in the literature. We noted that the highest electrophilic
superdelocalizability on nitrogen (major) and number of rotat-
able bonds (minor) are important molecular descriptors to
explain the variation in PA. The variation in Na+ affinity is
attributed to the electrostatic interaction, especially ion-dipole
interactions. The HSAB principles can be used to explain the
Cu+ and Ag+ affinities. The variations in Cu+ and Ag+ affinities

CSvsZW) |predicted CS affinity- actual affinity| -
|predicted ZW affinity- actual affinity| (12)
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would be explained by the softness, dipole moment, and degree
of linearity properties of AA.

In comparison to MLR and PLS models, better predictive
powers are obtained by using ANN models. The nonlinear
relationships between molecular descriptors and affinities were
discussed. We also demonstrated the use of QSAR models to
study the (neutral vs zwitterionic) binding forms of AA upon
protonation and cationization. Our results estimated that upon
Na+/Ag+ bindings, Pro adopts the ZW form. On the other hand,
other AA adopt the CS form upon protonation and cationization.
We also illustrated the use of the Na+ ANN model to predict
the novel affinity for DOPA.

The use of QSAR models in predicting/elucidating the binding
affinity/nature/form of protonated/cationized AA is illustrated
in this work. Although gas-phase affinities ofΑΑ appear to be
reasonably well established, studies of the affinities of peptides
are much less definitive. It is believed that the intrinsic binding
properties between proton/metal cation and peptides may have
biological implications and values on their potential applications
in mass spectrometric research fields. Our work onΑΑ, as the
building blocks of peptides and proteins, may pave the way for
the application of QSAR models in large systems in the future.
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